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Cyclotomic valuation of q-Pochhammer symbols and
q-integrality of basic hypergeometric series

by

B. Adamczewski (Lyon), J. P. Bell (Waterloo, ON),
É. Delaygue (Lyon) and F. Jouhet (Lyon)

Abstract. We give a formula for the cyclotomic valuation of q-Pochhammer symbols
in terms of (generalized) Dwork maps. We also obtain a criterion for the q-integrality of
basic hypergeometric series in terms of certain step functions, which generalize Christol
step functions. This provides suitable q-analogs of two results proved by Christol: a formula
for the p-adic valuation of Pochhammer symbols and a criterion for the N -integrality of
hypergeometric series.

1. Introduction. Factorial ratios form a remarkable class of sequences
appearing regularly in combinatorics, number theory (e.g. [3, 7, 9, 21]), and
mathematical physics and geometry (e.g. [5, 10, 12]). They are sequences of
rational numbers of the form

Qe,f (n) :=
(e1n)! · · · (evn)!
(f1n)! · · · (fwn)!

, n ≥ 0,

where v and w are non-negative integers, and e := (e1, . . . , ev) and f :=
(f1, . . . , fw) are vectors whose coordinates are positive integers. Understand-
ing how arithmetic properties of factorial ratios may depend on the integer
parameters ei and fi leads to interesting and challenging problems. Landau
[19] introduced the step function

(1.1) ∆e,f (x) :=
v∑

i=1

⌊eix⌋ −
w∑

j=1

⌊fjx⌋
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and proved that the p-adic valuation of factorial ratios is given by

vp(Qe,f (n)) =
∞∑
ℓ=1

∆e,f

(
n

pℓ

)
.

This result generalizes the classical Legendre formula: vp(n!) =
∑∞

ℓ=1⌊n/pℓ⌋.
Surprisingly, certain basic properties of the Landau function ∆e,f turn out to
characterize fundamental arithmetic properties of the corresponding factorial
ratio and its generating series. Indeed, assuming for simplicity that

∑
i ei =∑

j fj , we have the following results.

(i) The sequence (Qe,f (n))n≥0 takes integer values if and only if ∆e,f (x)≥0,
for all x∈ [0, 1].

(ii) The sequence (Qe,f (n))n≥0 has the p-Lucas property for all primes p (1)
if and only if ∆e,f (x) ≥ 1 for all x ∈ [me,f , 1], where me,f :=
1/max {e1, . . . , ev, f1, . . . , fw}.

(iii) The generating series of (Qe,f (n))n≥0 is algebraic(2) if and only if∆e,f (x)
∈ {0, 1} for all x ∈ [0, 1].

Items (i) and (iii) were respectively proved by Landau [19] (see also [7])
and Rodriguez-Villegas [20] (as a consequence of [6]). Item (ii) corresponds
to [2, Proposition 8.3] and was derived from [13, Theorem 3].

Choosing for example e = (30, 1) and f = (15, 10, 6), a straightforward
computation shows that the corresponding sequence takes integer values,
does not have the p-Lucas property for all primes, and has an algebraic
generating series. At first sight, proving this result is not easy: for example,
Rodriguez-Villegas [20] observed that the degree of algebraicity is 483 840.

These results have been generalized, replacing factorials by Pochhammer
symbols and factorial ratios by hypergeometric sequences. We recall that the
Pochhammer symbol (x)n, also called the rising factorial, is defined as

(x)n = x(x+ 1) · · · (x+ n− 1),

if n ≥ 1 and (x)0 = 1, so that (1)n = n! and

(1.2) (dn)! = ddn
(
1

d

)
n

· · ·
(
d− 1

d

)
n

(1)n.

Given α ∈ Q\Z≤0 and p a prime such that vp(α) ≥ 0, Christol [11] provided

(1) That is Qe,f (pn + r) ≡ Qe,f (n)Qe,f (r) mod p for every r ∈ {0, . . . , p − 1} and
n ≥ 0.

(2) This means that the power series
∑∞

n=0 Qe,f (n)x
n ∈ Q[[x]] is algebraic over the

field Q(x).
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the following formula (3) for the p-adic valuation of Pochhammer symbols:

(1.3) vp((α)n) =

∞∑
ℓ=1

⌊
n− ⌊1− α⌋

pℓ
−Dℓ

p(α) + 1

⌋
,

where Dp(α) is defined as the unique rational number whose denominator
is not divisible by p and such that pDp(α) − α ∈ {0, . . . , p − 1}. The maps
α 7→ Dp(α) were first introduced by Dwork [15] and are now referred to as
Dwork maps. When α = 1, we have Dp(1) = 1 and we retrieve Legendre’s
formula. Note also that if vp(α) < 0, then simply vp((α)n) = nvp(α).

Given two vectors α := (α1, . . . , αv) and β := (β1, . . . , βw) with coordi-
nates in Q \ Z≤0, we define the (generalized) hypergeometric sequence

(1.4) Qα,β(n) :=
(α1)n · · · (αv)n
(β1)n · · · (βw)n

∈ Q, n ≥ 0.

The above restriction on the rational parameters βj ensures that Qα,β(n)
is well-defined for all n ≥ 0. We also assume that the parameters αi do not
belong to Z≤0, since otherwise Qα,β(n) would vanish for all n large enough,
which would make them irrelevant for our purpose. These sequences and
their generating series have attracted a lot of attention since the time of
Gauss. According to (1.2), the study of factorial ratios reduces to the study
of certain hypergeometric sequences. Again, understanding how the arith-
metic properties of hypergeometric sequences may depend on the rational
parameters αi and βj leads to fascinating questions.

We let dα,β denote the least common multiple of the denominators of
the parameters αi and βj . In [11], Christol introduced new step functions
ξα,β(a, ·), for every a ∈ {1, . . . , dα,β} coprime to dα,β, which play the same
role for hypergeometric sequences as the Landau function ∆e,f does for fac-
torial ratios. We refer the reader to Section 5.1 for a definition.

Analogs of (i)–(iii) have been respectively obtained by Christol [11],
Adamczewski, Bell, and Delaygue [2], and Beukers and Heckman [6] (4).
We point out that, for the analog of (i), it is more natural to consider N -
integrality of the sequence (Qα,β(n))n≥0, that is, to ask whether there exists
a non-zero integer a such that anQα,β(n) ∈ Z for all n ≥ 0. Also, for the
analog of (ii), it is more natural to consider the p-Lucas property for all
but finitely many primes in a given residue class modulo dα,β. Finally, the
required conditions about the Landau function must now be satisfied by the

(3) More exactly, formula (1.3) is a reformulation with floor functions of Christol’s
result, as given in [14, Section 5.3].

(4) We refer the reader to [11, 2, 6] for precise statements. The reformulation in terms
of Christol step functions of the famous interlacing criterion of Beukers and Heckmann
can be found in [14].
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Christol functions ξα,β(a, ·) for all a ∈ {1, . . . , dα,β} coprime to dα,β. In
particular, the analog of (i) proved by Christol [11] reads as follows.

Theorem A. Let α := (α1, . . . , αu) and β := (β1, . . . , βv) be two vectors
whose coordinates belong to Q \ Z≤0. Then the following two assertions are
equivalent:

(a) The hypergeometric sequence (Qα,β(n))n≥0 is N -integral.
(b) For every a in {1, . . . , dα,β} coprime to dα,β and all x in R, we have

ξα,β(a, x) ≥ 0.

A remarkable feature of (i)–(iii) and of the results proved in [11, 2, 6] is
that they provide simple algorithms, given in terms of suitable step functions,
that allow one to decide whether certain fundamental arithmetic properties
of factorial ratios and hypergeometric sequences hold (5).

1.1. Main results. In this paper, our main objective is to prove q-
analogs of formula (1.3) and Theorem A. From now on, we let q denote a
fixed transcendental complex number.

We are going to define suitable q-analogs of the Pochhammer symbol (α)n
and of the hypergeometric term Qα,β(n), which belong to the field Q(q). In
this framework, the p-adic valuations are replaced by the cyclotomic valua-
tions, while the notion of N -integrality is replaced by q-integrality. For every
positive integer b, we let ϕb(q) ∈ Z[q] denote the bth cyclotomic polynomial
and vϕb

stands for the valuation of Q(q) associated with ϕb(q) (see Section
2.1 for a definition). A sequence (R(q;n))n≥0 with values in Q(q) and first
term R(q; 0) = 1 is said to be q-integral if there exists C(q) ∈ Z[q]\{0} such
that C(q)nR(q;n) ∈ Z[q] for all n ≥ 0.

For every positive integer n, the q-analog of the integer n is defined as
[n]q = 1 + q + · · ·+ qn−1, while [0]q = 0. It is actually convenient to write

[n]q =
1− qn

1− q
,

while keeping in mind that this ratio belongs to Z[q]. It follows that

[n]q =
∏

b≥2, b|n

ϕb(q),

which specializes as

(1.5) n =
∏

b≥2, b|n

ϕb(1).

(5) We also refer the reader to [4] for more general results about integrality of A-
hypergeometric series.
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We recall that ϕb(1) = 1 if b is divisible by at least two distinct primes, while
ϕpℓ(1) = p when p is a prime and ℓ is a positive integer. We deduce that

(1.6) vp(n) =
∞∑
ℓ=1

vϕ
pℓ
([n]q).

This formula shows that, in some sense, the arithmetic of q-analogs is finer
than that of integers. The q-analog of n! is defined as

[n]!q :=
n∏

i=1

1− qi

1− q
·

Given α = r/s a rational number, the q-analog of the Pochhammer symbol
(α)n is most often defined as (see, for instance, [16])

(qα; q)n
(1− q)n

∈ Q(q1/s),

where we let (a; q)n :=
∏n−1

i=0 (1 − aqi) denote the q-Pochhammer symbol
(also called the q-shifted factorial). Substituting q by qs, we obtain a slightly
different q-analog of (α)n:

(1.7)
(qr; qs)n
(1− qs)n

∈ Q(q).

We note that

lim
q→1

(qα; q)n
(1− q)n

= lim
q→1

(qr; qs)n
(1− qs)n

= (α)n.

The latter has several advantages which are discussed in Section 2. In the
end, it is sufficient for our discussion to consider q-Pochhammer symbols of
the form

(qr; qs)n :=

n−1∏
i=0

(1− qr+si) ∈ Z[q−1, q],

where r and s are two integers, s ̸= 0. This product is non-zero if and only
if r/s /∈ Z≤0 or n ≤ −r/s. The usual extension to negative arguments n is
given by

(1.8) (qr; qs)n =
−n∏
i=1

1

(1− qr−is)
=

1

(qr−s; q−s)−n
,

which is well-defined if and only if r/s /∈ Z>0 or n > −r/s.

Our first main result, which provides a q-analog of formula (1.3) as well
as its extension to negative arguments, involves a generalization of Dwork
maps where the prime number p is replaced by an arbitrary positive inte-
ger b. Given a positive integer b and a rational number α whose denominator
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is coprime to b, we show in Section 3.1 that there exists a unique ratio-
nal number Db(α) whose denominator is coprime to b and which satisfies
bDb(α) − α ∈ {0, . . . , b − 1}. When b = p is prime, we retrieve the classical
Dwork map Dp.

Theorem 1.1. Let r and s be two integers, s ̸= 0, and α := r/s. Let b
be a positive integer, c := gcd(r, s, b), b′ := b/c, and s′ := s/c. Let n ∈ Z be
such that (qr; qs)n is well-defined and non-zero. Then

vϕb
((qr; qs)n) =

{
⌊cn/b−Db′(α)− ⌊1− α⌋/b′⌋+ 1 if gcd(s′, b′) = 1,

0 otherwise.

Remark 1.2. Recall that vϕb
((1−qs)n) = nvϕb

(1−qs) and vϕb
(1−qs) = 1

if b divides s and 0 otherwise. Hence we can easily derive from Theorem 1.1
a formula for the ϕb-valuation of the q-analog of (α)n given in (1.7).

We now define q-analogs of hypergeometric sequences with rational pa-
rameters. For i ∈ {1, . . . , v} and j ∈ {1, . . . , w}, we let (ri, si) and (tj , uj) be
pairs of integers such that si ̸= 0 and uj ̸= 0. We set

r := ((r1, s1), . . . , (rv, sv)) and t := ((t1, u1), . . . , (tw, uw)),

together with α := (α1, . . . , αv) and β := (β1, . . . , βw), where αi := ri/si
and βj := tj/uj . Let dr,t := lcm(s1, . . . , sv, u1, . . . , uw). With this notation,
we define the q-hypergeometric sequence

(1.9) Qr,t(q;n) :=
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

, n ≥ 0.

Note that, similarly to (1.4), Qr,t(q;n) is well-defined for all n ≥ 0 when
the rational numbers βj do not belong to Z≤0. In addition, we assume that
the rational numbers αi do not belong to Z≤0, since otherwise Qr,t(q;n)
would vanish for all n large enough, which would make them irrelevant for
our purpose.

Our second main result is a q-analog of Theorem A. It involves new step
functions Ξr,t(b, ·), b ∈ {1, . . . , dr,t}, which generalize Christol step func-
tions. They are introduced in Section 5, where we also show that Ξr,t(b, ·) =
ξα,β(a, ·) for b coprime to dr,t and ba ≡ 1 mod dr,t. Thus, we only define
new functions for b not coprime to dr,t. The appearance of these new func-
tions makes the proof of Theorem 1.3 substantially more tricky than that of
Theorem C.

Theorem 1.3. Keeping the previous notation and assumptions, assume
also that s1, . . . , sv are positive. Then the following two assertions are equiv-
alent:

(i) The sequence (Qr,t(q;n))n≥0 is q-integral.
(ii) For every b ∈ {1, . . . , dr,t} and all x in R, we have Ξr,t(b, x) ≥ 0.
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A generalization of Theorem 1.3 with no restriction on the parameters
s1, . . . , sv ∈ Z \ {0} is obtained as Theorem 5.6 in Section 5.4.

Given some parameters r and t, checking whether (ii) is satisfied is a
simple exercise. Indeed, for every b in {1, . . . , dr,t}, the step function Ξr,t(b, ·)
is non-negative on R if and only if Ξr,t(b, Γi) ≥ 0 for a finite number of points
Γi which are explicitly given in (5.6). As mentioned in Remark 5.5, one can
easily compute Ξr,t(b, Γi). In particular, the proof of Theorem 1.3 leads to
an algorithm which, given r and t, decides whether Qr,t(q;n) is q-integral
or not.

Remark 1.4. Strictly speaking, Qr,t(q;n) is not a q-analog of the hyper-
geometric term Qα,β(n). Instead, (1.7) shows that a suitable q-analog can
be defined as

Q′
r,t(q;n) :=

(∏w
j=1(1− quj )∏v
i=1(1− qsi)

)n

Qr,t(q;n).

Indeed, we have

(1.10) lim
q→1

Q′
r,t(q;n) = Qα,β(n).

Since the q-integrality of (Qr,t(q;n))n≥0 is equivalent to that of
(Q′

r,t(q;n))n≥0, we find it more convenient to work with the simpler ex-
pression Qr,t(q;n).

We infer from (1.10) that the q-integrality of the sequence (Qr,t(q;n))n≥0

implies the N -integrality of (Qα,β(n))n≥0. This is consistent with Theorems
1.3 and C since Ξr,t(b, ·) = ξα,β(a, ·) when ba ≡ 1 mod dr,t. However, the
converse does not always hold, depending on the behaviour of Ξr,t(b, ·) for
b not coprime to dr,t.

For example, let us consider the vectors

r := ((1, 3), (2, 3)) and t := ((1, 2), (1, 1)).

Then α = (1/3, 2/3) and β = (1/2, 1). We deduce from (1.2) (or from
Theorem A) that the hypergeometric sequence

Qα,β(n) =
(1/3)n(2/3)n
(1/2)n(1)n

, n ≥ 0,

is N -integral. However, Ξr,t(3, 1/2) < 0 (see Section 6.1 for more details)
and thus, according to Theorem 1.3, the q-hypergeometric sequence

Qr,t(q;n) =
(q; q3)n(q

2; q3)n
(q; q2)n(q; q)n

, n ≥ 0,

fails to be q-integral.

1.2. Organization of the paper. In Section 2, we discuss our choice
for the q-analog of the Pochhammer symbol (α)n and show how to relate
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our results on q-hypergeometric sequences to basic hypergeometric series as
they are usually defined. In Section 3, we extend the definition of Dwork
maps to arbitrary integers b and prove some of their basic properties. We
also prove Theorem 1.1, as well as a formula for the cyclotomic valuation
of q-hypergeometric terms. The latter is given in terms of certain step func-
tions ∆r,t

b , which are introduced in this section. In Section 4, we deduce a
first criterion for the q-integrality of q-hypergeometric sequences, which de-
pends on the behaviour of ∆r,t

b for all but finitely many integers b. We also
discuss the extension of this result to negative arguments n. These first cri-
teria for q-integrality are not very satisfactory because they imply checking
certain properties of an infinite number of step functions. We fill this gap
in Section 5, where we introduce the finitely many step functions Ξr,t(b, ·),
b ∈ {1, . . . , dr,t}, and prove Theorem 1.3. Finally, we provide some illustra-
tions of Theorem 1.3 in Section 6.

2. Choices for the q-analogs of Pochhammer symbols and hyper-
geometric functions. The notion of q-analog is loosely defined: for a(q)
to be a q-analog of a term a, one only requires that a(q) tends to a as q
tends to 1. While everyone agrees on the definition of [n]q and [n]!q, this
requires a fair amount of choice for more general expressions. Depending on
the nature of the properties one wishes to study, one may have to make one
choice rather than another. In this section, we discuss in more detail our
own choices for the q-analogs of Pochhammer symbols and hypergeometric
series, as well as how our results translate when considering other natural
q-analogs.

2.1. Cyclotomic valuations and q-valuation. We recall that, for ev-
ery positive integer b, ϕb(q) ∈ Z[q] stands for the bth cyclotomic polyno-
mial. It is well-known that ϕb(q) is irreducible over Z[q]. If R and S be-
long to Z[q] \ {0}, then we let vϕb

(R) denote the ϕb-valuation of R, that
is, the largest non-negative integer ν such that ϕb(q)

ν divides R. We also
set vϕb

(0) := +∞. The ϕb-valuation extends naturally to Q(q) by setting
vϕb

(R/S) := vϕb
(R)− vϕb

(S).
We also let vq denote the valuation of Q(q) which is associated with the

irreducible polynomial q in the same way.

2.2. q-Analogs of Pochhammer symbols. We explain now why we
prefer to choose

(2.1)
(qr; qs)n
(1− qs)n

∈ Q(q)
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as a q-analog of the Pochhammer symbol (α)n, α = r/s, instead of the more
standard

(2.2)
(qα; q)n
(1− q)n

∈ Q(q1/s).

There are three main reasons for our preference. The first one, which was
already mentioned in the introduction, is that we find it more natural to work
in the field Q(q) instead of working in the field

⋃
s≥1Q(q1/s) and dealing with

non-integer powers of q. The second one is that it offers more flexibility. For
example,

(q; q2)n
(1− q2)n

,
(q3; q6)n
(1− q6)n

, and
(q−1; q−2)n
(1− q−2)n

provide three different q-analogs of (1/2)n. The third one comes from the
useful equality (1.2), which we recall here for the reader’s convenience:

(2.3) (dn)! = ddn
(
1

d

)
n

(
2

d

)
n

· · ·
(
d− 1

d

)
n

(1)n.

With the choice of (qα; q)n/(1− q)n, we do not obtain a nice q-deformation
of (2.3). Indeed, take for instance d = 2, so that

(2n)! = 4n(1/2)n(1)n.

The q-analog of the left-hand side of (2.3) is

(q; q)2n
(1− q)2n

=
(q; q2)n(q

2; q2)n
(1− q)2n

= (−q1/2; q)n(−q; q)n
(q1/2; q)n
(1− q)n

(q; q)n
(1− q)n

,

therefore introducing minus signs in q-Pochhammer symbols. In contrast, the
choice (qr; qs)n/(1− qs)n ensures the following nice q-deformation of (2.3):

[dn]!q =

dn∏
i=1

1− qi

1− q
=

(
1− qd

1− q

)dn d∏
i=1

(qi; qd)n
(1− qd)n

·

Remark 2.1. Let d be a positive integer. Since q is transcendental over Q,
there is an isomorphism of Z-modules given by

φ : Z[q1/d] → Z[q], P (q1/d) 7→ P (q).

In particular, Z[q1/d] is a Euclidean ring whose irreducible elements are of
the form P (q1/d) where P (q) is an irreducible polynomial in Z[q]. The iso-
morphism φ extends to an isomorphism between the rings of Laurent poly-
nomials Z[q−1/d, q1/d] and Z[q−1, q], as well as between the fields Q(q1/d) and
Q(q). In particular, if we let vb,s denote the valuation in Q(q1/s) associated
with the irreducible polynomial ϕb(q

1/s) ∈ Z[q1/s] and if we take α = r/s,
then we obtain

vb,s((q
α; q)n/(1− q)n) = vϕb

((qr; qs)n/(1− qs)n).
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This shows that there is no loss of generality in choosing (2.1) as a q-analog
of (α)n.

2.3. q-Analogs of generalized hypergeometric series. Let us first
recall the standard notation for hypergeometric series (with rational pa-
rameters). With two vectors α = (α1, . . . , αv) and β = (β1, . . . , βw) whose
coordinates belong to Q \ Z≤0, we associate the generalized hypergeometric
series defined by

vFw

(
α1, . . . , αv

β1, . . . , βw

∣∣∣∣ x) :=
∞∑
n=0

(α1)n · · · (αv)n
(β1)n · · · (βw)nn!

xn,

while we usually prefer to work with its companion power series

Fα,β(x) := v+1Fw

(
α1, . . . , αv, 1

β1, . . . , βw

∣∣∣∣ x) =

∞∑
n=0

(α1)n · · · (αv)n
(β1)n · · · (βw)n

xn.

The basic hypergeometric series is defined as

vϕw

(
qα1 , . . . , qαv

qβ1 , . . . , qβw

∣∣∣∣ q;x)

:=
∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n(q; q)n

(
(−1)nq(

n
2)
)1+w−v

xn.

It is a generalization of the classical 2ϕ1 introduced by Heine [17] and the
most standard q-analog of the hypergeometric series vFw (see, for instance,
the monograph [16] for more on this topic). In fact, it is a q-analog up to
renormalization by a factor (q − 1)(w−v)n, that is,

lim
q→1

v+1ϕw

(
qα1 , . . . , qαv , q

qβ1 , . . . , qβw

∣∣∣∣ q; (q − 1)w−vx

)
= Fα,β(x).

Hence a first q-analog of Fα,β(x) is given by

F
(1)
α,β(q;x) := v+1ϕw

(
qα1 , . . . , qαv , q

qβ1 , . . . , qβw

∣∣∣∣ q; (q − 1)w−vx

)
(2.4)

=

∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

· (1− q)(w−v)nq(w−v)(n2)xn.

Now, choosing (qα; q)n/(1−q)n as a q-analog of the Pochhammer symbol
(α)n, we obtain another natural q-analog of Fα,β(x), namely

(2.5) F
(2)
α,β(q;x) :=

∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

· (1− q)(w−v)nxn.
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The two definitions only differ by the factor q(w−v)(n2). In particular, they
coincide when v = w.

Finally, choosing (qr; qs)n/(1 − qs)n as a q-analog of the Pochhammer
symbol (α)n, α = r/s, we obtain a third natural q-analog of Fα,β(x):
(2.6)

Fr,t(q;x) :=
∞∑
n=0

(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

·
(
(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n

xn,

where r = ((r1, s1), . . . , (rv, sv)), t = ((t1, u1), . . . , (tw, uw)), and ri/si = αi

and tj/uj = βj for all i and j.
Thus, we have three different natural q-analogs of the generalized hyper-

geometric series Fα,β(x). We observe that both F
(1)
α,β(q;x) and F

(2)
α,β(q;x)

have coefficients in Q(q1/d), where d = dα,β is the least common multiple of
the denominators of the rational numbers αi and βj . In contrast, Fr,t(q;x)
has coefficients in Q(q) and there exist infinitely many vectors r and t such
that

lim
q→1

Fr,t(q;x) = Fα,β(x).

Indeed, if r = ((r1, s1), . . . , (rv, sv)) and t = ((t1, u1), . . . , (tw, uw)) is such a
pair of vectors, then for each pair (a, b) occurring either in r or in t, we can
choose a non-zero integer k and replace (a, b) by (ka, kb).

2.4. q-Integrality and q1/d-integrality for basic hypergeometric
series. A power series F (q;x) ∈ 1+xQ(q)[[x]] is said to be q-integral if the
sequence formed by its coefficients is q-integral, or, in other words, if there
exists C(q) ∈ Z[q] \ {0} such that F (q;C(q)x) ∈ Z[q][[x]].

Similarly, we say that a power series F (q;x) ∈ 1 + xQ(q1/d)[[x]] is q1/d-
integral if there exists C(q)∈Z[q1/d]\{0} such that F (q;C(q)x)∈Z[q1/d][[x]].
According to Remark 2.1, F (q;x) is q1/d-integral if and only if F (qd;x) is
q-integral.

Now, we show how Theorem 1.3 can be used to study the q1/d-integrality
of F (1)

α,β(q;x) and F
(2)
α,β(q;x), as well as the q-integrality of Fr,t(q;x). Recall

that

F
(1)
α,β(q

d;x) =
∞∑
n=0

(qdα1 ; qd)n · · · (qdαv ; qd)n
(qdβ1 ; qd)n · · · (qdβw ; qd)n

· (1− qd)(w−v)nqd(w−v)(n2)xn,

F
(2)
α,β(q

d;x) =
∞∑
n=0

(qdα1 ; qd)n · · · (qdαv ; qd)n
(qdβ1 ; qd)n · · · (qdβw ; qd)n

· (1− qd)(w−v)nxn.

Setting r := ((dα1, d), . . . , (dαv, d)) and t := ((dβ1, d), . . . , (dβw, d)), we
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obtain

F
(1)
α,β(q

d;x) =
∞∑
n=0

Qr,t(q;n)(1− qd)(w−v)nqd(w−v)(n2)xn,

F
(2)
α,β(q

d;x) =
∞∑
n=0

Qr,t(q;n)(1− qd)(w−v)nxn,

Fr,t(q;x) =

∞∑
n=0

Qr,t(q;n)

(
(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n

xn.

Note that for q-integrality, we can omit factors of the form h(q)n with h(q) ∈
Q(q) such as

(1− qd)(w−v)n and
(
(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n

.

It follows that F (1)
α,β(q;x) is q1/d-integral if and only if Qr,t(q;n) is q-integral

and
vq
(
qd(w−v)(n2)

)
≥ an ∀n ≥ 0,

for some integer a, that is,

F
(1)
α,β(q;x) is q1/d-integral ⇐⇒ (Qr,t(q;n))n≥0 is q-integral and w ≥ v.

We also deduce that

F
(2)
α,β(q;x) is q1/d-integral ⇐⇒ Fr,t(q;x) is q-integral

⇐⇒ (Qr,t(q;n))n≥0 is q-integral.

2.5. Irreducible factors of q-Pochhammer symbols and q-integral-
ity of q-hypergeometric sequences. Throughout this paper, we work only
with ratios of products of terms of the form (qr; qs)n and 1− qs, where r and
s are integers, s ̸= 0, and n is an integer.

Let us first recall that, for every positive integer a, we have

(2.7) 1− qa = −
∏
b|a

ϕb(q) and 1− q−a = −q−a(1− qa) = q−a
∏
b|a

ϕb(q).

Let n ∈ Z. It follows that any ratio of products of terms of the form (qr; qs)n
and 1−qs, where r and s are integers and s ̸= 0, has a unique decomposition
of the form

(2.8) ±qvq,n
∞∏
b=1

ϕb(q)
vb,n ,

where vq,n, v1,n, . . . are integers and vb,n = 0 for all but finitely many positive
integers b. The integer vq,n is the q-valuation of this ratio and, for every b ≥ 1,
the integer vb,n is its ϕb-valuation.
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Remark 2.2. A term of the form (2.8) belongs to Z[q] if and only if
the integers vq,n, v1,n, v2,n, . . . are all non-negative. When only the integers
v1,n, v2,n, . . . are non-negative, then the term belongs to Z[q−1, q].

2.5.1. The q-valuation of q-Pochhammer symbols. Let n be a positive
integer and r and s be two integers, s ̸= 0. Let us assume that (qr; qs)n is
well-defined and non-zero. We let N := {i ∈ {0, . . . , n − 1} : r + is < 0}.
Then

vq((q
r; qs)n) =

∑
i∈N

(r + is).

We deduce the following results:

(i) If r and s are non-negative, then vq((q
r; qs)n) = 0.

(ii) If r is negative and s positive, then the sequence (vq((q
r; qs)n))n≥0 re-

mains bounded.
(iii) If s is negative, then

(2.9) vq((q
r; qs)n) ∼

n→+∞
s

(
n

2

)
.

Now, let n be a negative integer. We can derive similar results from the
expression

(qr; qs)n =
1

(qr−s; q−s)−n
·

In particular, (vq((qr; qs)n))n≤0 remains bounded if s is negative, and

(2.10) vq((q
r; qs)n) ∼

n→−∞
s

(
−n

2

)
if s is positive.

2.5.2. Asymptotics for cyclotomic and q-valuations of q-hypergeometric
terms. Let us consider the q-hypergeometric sequence

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

, n ≥ 0,

which we assume to be well-defined and not eventually zero. We first infer
from (2.7) that

(2.11) vϕb
(Qr,t(q;n)) = O(n)

for every positive integer b. Let N1 := {i ∈ {1, . . . , v} : si < 0}, N2 := {j ∈
{1, . . . , w} : uj < 0}, and s =

∑
i∈N1

si−
∑

j∈N2
uj . Using (i)–(iii) above, we

deduce that

(2.12) vq(Qr,t(q;n)) = s

(
n

2

)
+O(n).
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It follows from (2.8), Remark 2.2, and equalities (2.11) and (2.12) that
(2.13)

(Qr,t(q;n))n≥0 is q-integral ⇐⇒ s ≥ 0 and vϕb
(Qr,t(q;n)) ≥ 0 ∀b ≫ 1

and

(2.14) ∃C(q) ∈ Z[q] \ {0} ∀n ≥ 0, C(q)nQr,t(q;n) ∈ Z[q−1, q]

⇐⇒ vϕb
(Qr,t(q;n)) ≥ 0 ∀b ≫ 1.

The discussion of Section 2.5.1 also shows how to derive similar results for
q-hypergeometric sequences of the form (Qr,t(q;n))n≤0.

3. The cyclotomic valuation of basic hypergeometric terms. In
this section, we introduce some generalizations of Dwork maps and Lan-
dau functions. They provide suitable tools to respectively compute the ϕb-
valuation of the q-Pochhammer symbol (qr; qs)n and of q-hypergeometric
terms. Our approach takes its source in the works of Dwork [15], Katz [18],
and Christol [11]. Precise formulas and properties for the p-adic valuation of
Pochhammer symbols (r/s)n were given by Delaygue, Rivoal, and Roques
[14] in order to prove the integrality of coefficients of some mirror maps. In
this section, we generalize those formulas, yielding finer results in analogy
with (1.6). We also show that our results extend naturally to negative n,
and we derive new formulas that could be used to simplify the proofs in [14,
Chapter 5] considerably.

3.1. A generalization of Dwork maps. We first extend the definition
of the Dwork map Dp, replacing the prime number p by an arbitrary positive
integer b.

For every rational number α, we let d(α) denote the exact positive denom-
inator of α, that is d(α) := min {d ∈ N : α = a/d, a ∈ Z}. Hence d(α) = 1 if
and only if α is an integer. We also let n(α) denote the numerator of α, that
is, the unique integer such that α = n(α)/d(α). For every positive integer
b, we consider the multiplicative set Sb := {k ∈ Z : gcd(k, b) = 1}. We let
S−1
b Z ⊂ Q denote the localization of Z by Sb, that is, the ring formed by the

rational numbers α such that d(α) belongs to Sb.

Proposition-Definition 3.1. Let b be a positive integer and α be in
S−1
b Z. There is a unique element Db(α) of S−1

b Z such that

(3.1) bDb(α)− α ∈ {0, . . . , b− 1}.
Furthermore,

(3.2) Db(α) = aα+

⌊
α− 1

b
− aα

⌋
+ 1

for every integer a satisfying ab ≡ 1 mod d(α).
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Remark 3.2. Note that the map Db is only defined from S−1
b Z into

itself. When b = 1, S−1
b Z = Q and D1 is just the identity map of Q. In

fact, not only Db(α) ∈ S−1
b Z, but, more precisely, equation (3.2) shows that

Db(α) ∈ 1
d(α)Z.

Proof of Proposition-Definition 3.1. Let us first assume for contradiction
that Db(α) is not unique, and let θ1 > θ2 be two distinct elements of S−1

b Z
satisfying (3.1). It would yield b ≥ 2 and b(θ1−θ2) ∈ {1, . . . , b−1}. Therefore
we would have θ1 − θ2 /∈ S−1

b Z, contrary to S−1
b Z being a ring. Hence Db(α)

is unique.
Now we prove the existence of Db(α) while establishing (3.2). Since, by

assumption, α belongs to S−1
b Z, we have gcd(d(α), b) = 1, and integers a

such that ab ≡ 1 mod d(α) do exist. Let a be such an integer and set

θ := aα+

⌊
α− 1

b
− aα

⌋
+ 1.

Observe that θ ∈ S−1
b Z. Since ba ≡ 1 mod d(α), baα − α is an integer and

bθ − α belongs to Z. Furthermore,
α− 1

b
< θ ≤ α− 1

b
+ 1,

which yields
−1 < bθ − α ≤ b− 1.

Hence Db(α) = θ, as expected.

Following Christol [11], we introduce some notation which allows us to
simplify the expression of Db(α) when b is large enough. For every real
number x, we let {x} denote its fractional part and we set

⟨x⟩ :=

{
{x} if x /∈ Z,
1 otherwise.

Hence ⟨x⟩ = 1− {1− x}. For every rational number α, we also define

nα :=

{
n(α) if α ≥ 0,

|n(α)|+ 1 otherwise.

Proposition 3.3. Let b be a positive integer and α be in S−1
b Z. Let a be

an integer satisfying ab ≡ 1 mod d(α). Then

Db(α) = ⟨aα⟩ −
⌊
⟨aα⟩ − α

b

⌋
.

Furthermore, if b ≥ nα, then

Db(α) =

{
⟨aα⟩ if α /∈ Z≤0,
0 otherwise.
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It follows that, for a fixed rational number α, and for all integers b ≥ nα
coprime to d(α), Db(α) only depends on the residue class of b modulo d(α).

Remark 3.4. When b is prime and α /∈ Z≤0, Lemma 23 in [14] shows
that Db(α) = ⟨aα⟩ for b ≥ d(α)(|⌊1−α⌋|+⟨α⟩). The condition b ≥ nα slightly
improves on this bound. When α > 0, it makes no difference since nα=n(α)
which can be written as d(α)α= d(α)(−⌊1−α⌋+⟨α⟩) with ⌊1−α⌋≤ 0. But
when α < 0, we have nα = |n(α)| + 1, which may improve on the previous
bound. For example, even for α = −1/2, one finds that d(α)(|⌊1−α⌋|+ ⟨α⟩)
= 3 while nα = 2.

Proof of Proposition 3.3. Since, by assumption, a does not divide d(α),
there is an integer k such that ⟨aα⟩ = k/d(α) and k ≡ an(α) mod d(α).
Hence bk ≡ n(α) mod d(α) and b⟨aα⟩ − α is an integer. It follows that

b

(
⟨aα⟩ −

⌊
⟨aα⟩ − α

b

⌋)
− α ∈ Z.

Furthermore,

⟨aα⟩ − α

b
− 1 <

⌊
⟨aα⟩ − α

b

⌋
≤ ⟨aα⟩ − α

b
,

so that

0 ≤ b

(
⟨aα⟩ −

⌊
⟨aα⟩ − α

b

⌋)
− α < b.

This proves the expected formula for Db(α) by uniqueness.
Now, let us assume that b ≥ nα. Then |α/b| ≤ 1/d(α) and (even if α is

an integer)
1

d(α)
≤ ⟨aα⟩ ≤ 1.

If α is positive, then it follows that

(3.3) ⌊⟨aα⟩ − α

b
⌋ = 0,

that is, Db(α) = ⟨aα⟩. If α = 0, then Db(α) = 0. If α is negative, then
nα = |n(α)|+ 1 and we obtain |α/b| < 1/d(α). Hence, either α is an integer
and

Db(α) = 1−
⌊
1− α

b

⌋
= 0,

or
1

d(α)
≤ ⟨aα⟩ ≤ d(α)− 1

d(α)

and Db(α) = ⟨aα⟩. In all cases, we obtain the expected result.
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We end this section with a simple rule about composition of Dwork maps.

Proposition 3.5. Let b and c be positive integers, and let α be in S−1
bc Z.

Then
Db(Dc(α)) = Dbc(α).

In particular, Dn
b = Dbn, and if bn ≥ nα is congruent to 1 modulo d(α) and

α ̸∈ Z≤0, then Dn
b (α) = ⟨α⟩.

Proof. We have

bcDb(Dc(α))− α = c
(
bDb(Dc(α))−Dc(α)

)
+ cDc(α)− α,

which belongs to {0, . . . , bc− 1}. Hence Db(Dc(α)) = Dbc(α) by uniqueness.
By induction, we get Dn

b = Dbn . By Proposition 3.3, if α /∈ Z≤0 and bn ≥ nα
is congruent to 1 modulo d(α), then Dn

b (α) = Dbn(α) = ⟨α⟩. Indeed, since
bn ≡ 1 mod d(α), we can choose a = 1.

3.2. The cyclotomic valuation of q-Pochhammer symbols. In this
section, we rephrase Theorem 1.1 as Proposition 3.8 and then we prove the
latter.

Definition 3.6. Let r, s, and b be integers with s ̸= 0 and b ≥ 1. Set
α := r/s, c := gcd(r, s, b), b′ := b/c, and s′ := s/c. If gcd(s′, b′) = 1, then
Db′(α) is well-defined and we set

(3.4) γ := Db′(α) +
⌊1− α⌋

b′
·

We define the (upper semicontinuous) step function δb(r, s, ·) : R → R by

δb(r, s, x) :=

{
⌊cx− γ⌋+ 1 if gcd(s′, b′) = 1,
0 otherwise.

Lemma 3.7. The real number γ defined in (3.4) belongs to (0, 1].

Proof. By definition, b′Db′(α) − α belongs to {0, . . . , b′ − 1} and α =
⟨α⟩ − ⌊1− α⌋, where ⟨α⟩ ∈ (0, 1]. Thus,

0 <
⟨α⟩
b′

≤ Db′(α) +
⌊1− α⌋

b′
≤ b′ − 1 + ⟨α⟩

b′
≤ 1,

as expected.

Proposition 3.8. Let r, s, and b be integers such that s ̸= 0 and b ≥ 1.
Let n be an integer such that (qr; qs)n is well-defined and non-zero. Then

vϕb
((qr; qs)n) = δb(r, s, n/b).

It follows that if b divides both r and s, then c = b, b′ = 1 and
δb(r, s, n/b) = n, as expected since ϕb(q) divides each factor 1 − qr+is. In
particular, this is the case when b = 1.
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In order to prove Proposition 3.8 for negative n, we need the following
lemma. It is also used in the proof of our criterion for the q-integrality of
q-hypergeometric sequences.

Lemma 3.9. Let r, s, and n be integers with s ̸= 0, and let b be a positive
integer. Then

(3.5) δb(r, s,−n/b) = −δb(r − s,−s, n/b).

Proof. We set c := gcd(r, s, b) and write b = cb′ and s = cs′. Both sides
of equation (3.5) are 0 when gcd(s′, b′) ̸= 1, so we can assume that s′ and b′

are coprime. Set α := r/s so that 1− α = (r − s)/(−s). We have

δb(r − s,−s, x) =

⌊
cx−Db′(1− α)− ⌊α⌋

b′

⌋
+ 1.

Since b′Db′(α)− α belongs to {0, . . . , b′ − 1}, we have

b′(1−Db′(α))− (1− α) = b′ − 1− (b′Db′(α)− α) ∈ {0, . . . , b′ − 1},

so that Db′(1− α) = 1−Db′(α). It follows that

(3.6) δb(r − s,−s, n/b) =

⌊
n

b′
+Db′(α)−

⌊α⌋
b′

⌋
.

If x ∈ R, we have x ∈ Z or ⌊−x⌋ = −⌊x⌋ − 1, which also yields α ∈ Z or
⌊1− α⌋ = −⌊α⌋.

Let us first consider the case where α /∈ Z. Then ⌊α⌋ = −⌊1−α⌋ and the
right hand-side of (3.6) becomes

(3.7)
⌊
n

b′
+Db′(α) +

⌊1− α⌋
b′

⌋
.

We have n+ b′Db′(α)− α ∈ Z, but α /∈ Z. Hence n+ b′Db′(α) + ⌊1− α⌋ is
not an integer and (3.7) is equal to

−
⌊
−n

b′
−Db′(α)−

⌊1− α⌋
b′

⌋
− 1 = −δb(r, s,−n/b),

as expected.
It remains to consider the case where α ∈ Z. Set k := −δb(r, s,−n/b) ∈ Z.

We have ⌊
−n

b′
−Db′(α)−

⌊1− α⌋
b′

⌋
= −k − 1,



Cyclotomic valuation of q-Pochhammer symbols 19

which yields the equivalences

− k − 1 ≤ −n

b′
−Db′(α)−

⌊1− α⌋
b′

< −k

⇐⇒ k <
n

b′
+Db′(α) +

1− α

b′
≤ k + 1

⇐⇒ k − 1

b′
<

n

b′
+Db′(α)−

α

b′
≤ k + 1− 1

b′
·

Even if b′ = 1, we obtain ⌊
n

b′
+Db′(α)−

α

b′

⌋
= k.

Combined with (3.6), this yields (3.5) and ends the proof of the lemma.

Proof of Proposition 3.8. Set r′ = r/c. We first consider the case n ≥ 0.
We assume that (qr; qs)n is non-zero, that is, α /∈ Z≤0 or n ≤ −α.

We observe that b | (r + is) if and only if b′ | (r′ + is′). Since we have
gcd(r′, s′, b′)= 1, if b′ and s′ are not coprime then b ∤ (r+is) and vϕb

((qr; qs)n)
= 0.

We now assume that b′ and s′ are coprime. We need to find, among the
powers of q in the product defining (qr; qs)n, which are multiples of b. We
have the following equivalences:

r′ + is′ ≡ 0 mod b′ ⇐⇒ i ≡ −α mod b′S−1
b′ Z

⇐⇒ i ≡ b′Db′(α)− α mod b′

⇐⇒ ∃k ∈ N i = b′Db′(α)− α+ kb′,

because i ≥ 0 and b′Db′(α)− α belongs to {0, . . . , b′ − 1}. We aim to count
how many such integers i belong to {0, . . . , n− 1}. Writing n− 1 = v+mb′,
with 0 ≤ v ≤ b′ − 1, and setting η := b′Db′(α) − α, we find that all the m
integers η, η + b′, . . . , η + (m − 1)b′ can serve as i. There is one more such
integer if and only if v ≥ b′Db′(α)− α. Furthermore,

v ≥ b′Db′(α)− α ⇐⇒ v + 1 ≥ b′Db′(α) + ⌊1− α⌋(3.8)

⇐⇒ v + 1

b′
≥ Db′(α) +

⌊1− α⌋
b′

·(3.9)

Equivalence (3.8) follows from the implication

v + 1 ≥ b′Db′(α) + ⌊1− α⌋ =⇒ v + 1− ⟨α⟩ ≥ b′Db′(α)− α

=⇒ v ≥ b′Db′(α)− α,

because 1 − ⟨α⟩ belongs to [0, 1). By Lemma 3.7, since both sides of (3.9)
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belong to (0, 1], we obtain

vϕb
((qr; qs)n) = m+

⌊
v + 1

b′
−Db′(α)−

⌊1− α⌋
b′

⌋
+ 1

=

⌊
n

b′
−Db′(α)−

⌊1− α⌋
b′

⌋
+ 1,

as expected.
We now assume that n < 0 and that (qr; qs)n is well-defined, that is,

α /∈ Z>0 or n > −α. We have

(qr; qs)n =
1

(qr−s; q−s)−n
·

Using the non-negative case, we get vϕb
((qr; qs)n) = −δb(r − s,−s,−n/b).

By Lemma 3.9, the latter is equal to δb(r, s, n/b). This ends the proof.

3.3. Extension to q-hypergeometric terms. Let

r = ((r1, s1), . . . , (rv, sv)) and t = ((t1, u1), . . . , (tw, uw))

be two vectors with integer coordinates and such that s1, . . . , sv, u1, . . . , uw
are non-zero. Set αi := ri/si and βj := tj/uj . For every non-negative n, the
ratio

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

is well-defined if for each j∈{1, . . . , w}, we have either βj /∈Z≤0 or n≤−βj .
According to (1.8), this q-hypergeometric term admits the following exten-
sion to negative n:

Qr,t(q;n) =
(qt1−u1 ; q−u1)−n · · · (qtw−uw ; q−uw)−n

(qr1−s1 ; q−s1)−n · · · (qrv−sv ; q−sv)−n
·

The latter is well-defined if for each i ∈ {1, . . . , v}, we have either αi /∈ Z>0

or n > −αi.
If R(q) and S(q) are non-zero elements in Z[q−1, q], we write R(q) ∼ S(q)

when R(q)/S(q) is a unit of Z[q−1, q], that is, when it is of the form ϵqm with
ϵ ∈ {−1, 1} and m ∈ Z.

We now introduce some step functions that generalize the Landau func-
tions mentioned in the introduction.

Definition 3.10. Keeping the notation of Section 3.2, for every integer
b we define the (upper semicontinuous) step function ∆r,t

b : R → R by

∆r,t
b (x) :=

v∑
i=1

δb(ri, si, x)−
w∑

j=1

δb(tj , uj , x).

As a direct consequence of Proposition 3.8, we deduce the following result.
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Corollary 3.11. Let n ∈ Z be such that Qr,t(q;n) is well-defined and
non-zero. Then

vϕb
(Qr,t(q;n)) = ∆r,t

b (n/b),

that is,

(3.10) Qr,t(q;n) ∼
∞∏
b=1

ϕb(q)
∆r,t

b (n/b).

Remark 3.12. Let α := (α1, . . . , αv) and β := (β1, . . . , βw) be vectors
of rational numbers. Let d := dα,β be the least common multiple of the
denominators of the rational numbers αi and βj . Let n be an integer such
that

(3.11) Q̃α,β(q;n) :=
(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

is well-defined and non-zero. Then Q̃α,β(q;n) belongs to Q(q1/d). By Remark
2.1, Corollary 3.11 implies that

(3.12) Q̃α,β(q;n) ∼
∞∏
b=1

ϕb(q
1/d)∆

r,t
b (n/b),

where ∼ has to be understood in Z[q−1/d, q1/d], and where
r = ((dα1, d), . . . , (dαv, d)) and t = ((dβ1, d), . . . , (dβw, d)).

4. First criteria for q-integrality of basic hypergeometric se-
quences. In this section, we provide a criterion for the q-integrality of the
q-hypergeometric sequences in terms of the Landau functions ∆r,t

b , as well
as related results.

4.1. A first criterion of q-integrality. Our first result reads as follows.

Proposition 4.1. Keeping the notation of the previous sections, assume
that (Qr,t(q;n))n≥0 is a well-defined sequence. Then the following two asser-
tions are equivalent:

(i) There exists C(q) ∈ Z[q] \ {0} such that C(q)nQr,t(q;n) ∈ Z[q−1, q] for
every n ≥ 0.

(ii) For all but finitely many positive integers b, ∆r,t
b is non-negative on R≥0.

According to (2.13), we deduce from Proposition 4.1 the following result.

Corollary 4.2. Assume that (Qr,t(q;n))n≥0 is a well-defined sequence.
Let N1 := {i ∈ {1, . . . , v} : si < 0}, N2 := {j ∈ {1, . . . , w} : uj < 0},
and s =

∑
i∈N1

si −
∑

j∈N2
uj. Assume that s ≥ 0. Then the following two

assertions are equivalent.

(i) The sequence (Qr,t(q;n))n≥0 is q-integral.
(ii) For all but finitely many positive integers b, ∆r,t

b is non-negative on R≥0.
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Throughout this section, we fix r and t, and we write ∆b as shorthand
for ∆r,t

b . Before proving Proposition 4.1, we need to establish the following
lemma about the jumps of Landau step functions.

Lemma 4.3. For any integers k and b ≥ 1, and every real number x, we
have

∆b(x+ k) = ∆b(x) + k∆b(1).

Furthermore, if b is large enough, then the distance between any two distinct
jumps of ∆b is greater than or equal to 1/b.

Remark 4.4. By Lemma 4.3, ∆b is non-negative on R≥0 if and only if it is
non-negative on [0, 1]. In addition, if b is coprime to dr,t, then ∆b(1) = v−w
and Proposition 4.1(ii) implies that v ≥ w.

Proof of Lemma 4.3. Let us first give a useful expression for ∆b. For all i
and j, we recall that αi = ri/si and βj = tj/uj . We also set ci := gcd(ri, si, b),
dj := gcd(tj , uj , b), and

(4.1)
Vb := {1 ≤ i ≤ v : gcd(si, b) = ci},
Wb := {1 ≤ j ≤ w : gcd(uj , b) = dj}.

We observe that i ∈ Vb if and only if δb(ri, si, ·) is not the zero function,
while j ∈ Wb if and only if δb(tj , uj , ·) is not the zero function. It follows
that

(4.2) ∆b(x) =
∑
i∈Vb

⌊
cix−Db/ci(αi)−

⌊1− αi⌋
b/ci

⌋

−
∑
j∈Wb

⌊
djx−Db/dj (βj)−

⌊1− βj⌋
b/dj

⌋
+#Vb −#Wb.

Since b/ci is coprime to d(αi) and b/dj is coprime to d(βj), we infer from
Lemma 3.7 that

Db/ci(αi) +
⌊1− αi⌋
b/ci

∈ (0, 1] and Db/dj (βi) +
⌊1− βj⌋
b/dj

∈ (0, 1].

By (4.2), we first deduce that ∆b(1) =
∑

i∈Vb
ci −

∑
j∈Wb

dj , and so

∆b(x+ k) = ∆b(x) +
∑
i∈Vb

cik −
∑
j∈Wb

djk

= ∆b(x) + k∆b(1)

for every integer k. This proves the first part of the lemma.
By (4.2), the jumps of the step function ∆b have abscissas of the form

(4.3) γ(r, s, k) :=
Db/c(α) + k

c
+

⌊1− α⌋
b

,
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where (r, s) belongs to r or t, α = r/s, c = gcd(r, s, b) and k ∈ Z. Let
γ1 := γ(r1, s1, k1) and γ2 := γ(r2, s2, k2) be two distinct abscissas of jumps
as in (4.3). For i = 1 or 2, set αi := ri/si, ci := gcd(ri, si, b) and bi := b/ci.
If

Db1(α1) + k1
c1

=
Db2(α2) + k2

c2
,

then ⌊1− α1⌋ ≠ ⌊1− α2⌋ and

|γ1 − γ2| =
|⌊1− α1⌋ − ⌊1− α2⌋|

b
≥ 1

b
,

as expected. Otherwise, we get∣∣∣∣Db1(α1) + k1
c1

− Db2(α2) + k2
c2

∣∣∣∣ ≥ 1

dr,t
·

Indeed, we infer from Remark 3.2 that Dbi(αi) ∈ ci
si
Z, which shows that

Dbi(αi) + ki
ci

∈ 1

si
Z.

Hence, for b ≥ 2dr,t ·max {|⌊1− α⌋ − ⌊1− β⌋|+ 1 : α and β in α or β}, we
have

|γ1 − γ2| >
1

2dr,t
≥ 1

b
,

as expected. This ends the proof.

Proof of Proposition 4.1. We first infer from (2.14) and (3.10) that as-
sertion (ii) implies (i). Now, we assume that (i) holds and we prove (ii).
By (2.14) and (3.10), there exists a positive integer m such that, for every
non-negative integer n and every integer b ≥ m, we have ∆b(n/b) ≥ 0. By
Lemma 4.3, we can assume that m is such that, for b ≥ m, the distance
between any two distinct jumps of ∆b is greater than or equal to 1/b. It
follows that ∆b is non-negative on R≥0 for all b ≥ m, as desired.

4.2. Related criteria for negative arguments. It is easy to de-
duce from Proposition 4.1 a criterion for the q-integrality of the sequence
(Qr,t(q;−n))n≥0. Indeed, for every integern, we haveQr,t(q;n)=Qt′,r′(q;−n)
(assuming that both terms are well-defined), where r′ and t′ are respectively
obtained from r and t by replacing each pair (r, s) in r or t by (r − s,−s).
By Lemma 3.9, for every positive integer b, we have

∆r,t
b (n/b) = ∆t′,r′

b (−n/b).

Combining Lemma 4.3 and Proposition 4.1, we find that the following two
assertions are equivalent.

(i) There exists C(q) ∈ Z[q] \ {0} such that C(q)nQr,t(q;n) ∈ Z[q−1, q] for
every n ∈ Z≤0.

(ii) For all but finitely many positive integers b, ∆r,t
b is non-negative on R≤0.
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A natural question is then whether it is possible to find a non-zero rational
fraction C(q) in Q(q) such that C(q)nQr,t(q;n) is a polynomial for positive
and negative n simultaneously. The main problem is that the numerator of
C(q) will bring new denominators for negative n and vice versa. It turns out
that this problem can be overcome only in the special case where Qr,t(q;n) ∈
Z[q−1, q] for all integers n.

Proposition 4.5. Assume that (Qr,t(q;n))n∈Z is a well-defined family.
Then the following three assertions are equivalent:

(i) There exists C(q) ∈ Q[q] \ {0} such that C(q)nQr,t(q;n) ∈ Z[q−1, q] for
every n ∈ Z.

(ii) For every n ∈ Z, Qr,t(q;n) ∈ Z[q−1, q].
(iii) For every n ∈ N, Qr,t(q;n) ∈ Z[q−1, q], and for all but finitely many

positive integers b, ∆r,t
b is 1-periodic.

Proof. Let us first prove that (i) implies (iii). If we assume (i), then,
by the above criteria, for every large enough positive integer b, ∆b is non-
negative on R. By Lemma 4.3, we deduce that ∆b(1) = 0 and ∆b is 1-
periodic. Even for small positive integers b, we have

∆b(1) =
∑
i∈Vb

ci −
∑
j∈Wb

dj ,

where Vb, Wb, ci and dj are defined as in (4.1), and only depend on the con-
gruence class of b modulo dr,t. Hence ∆b(1) = ∆b+ldr,t(1); but ∆b+ldr,t(1) = 0
for l large enough, so ∆b(1) = 0 and ∆b is 1-periodic for every positive inte-
ger b. In particular, if ∆b(n/b) < 0 for some positive integers n and b, then
there exists a negative integer m such that ∆b(m/b) < 0. In this case, the
ϕb-valuations of both Qr,t(q;n) and Qr,t(q;m) are negative, which contra-
dicts (i). It follows that Qr,t(q;n) ∈ Z[q−1, q] for every n ∈ N, and (iii) is
proved.

Now, let us prove that (iii) implies (ii). If (iii) holds, then, reasoning as
above, we find that ∆b is 1-periodic for all positive integers b. For all positive
integers n and b, we have Qr,t(q;n) ∈ Z[q−1, q], so that ∆b(n/b) ≥ 0. By
1-periodicity, for all integers n and b ≥ 1, we have ∆b(n/b) ≥ 0, that is,
Qr,t(q;n) ∈ Z[q−1, q], as expected.

Obviously, (ii) implies (i) by choosing C(q) = 1, which ends the proof of
the proposition.

4.3. Small digression on the step function ∆r,t
b . In this section,

we use Proposition 3.3 to simplify the expression of ∆b(x) when b is large
enough. To that end we introduce some additional notation. Keeping the
notation introduced in (4.1), we let nα be defined as in Proposition 3.3. We
define ar,t as the maximum of the numbers gcd(ri, si) and gcd(tj , uj) for all
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i and j. We set

nr,t := max {nα : α in α or β} and br,t := ar,t · nr,t.
Let b ≥ br,t be a fixed integer. For every i ∈ Vb and j ∈ Wb, there exist
positive integers ei and fj such that

bei ≡ ci mod si and bfj ≡ dj mod uj .

Now, take for example i ∈ Vb. We have
b

ci
≥ br,t

ci
≥ ar,t

ci
nr,t ≥ nαi .

So we can apply Proposition 3.3 to find that Db/ci(αi) = ⟨eiαi⟩ if αi /∈ Z≤0

and 0 otherwise. Let us consider a slight modification of the function ⟨·⟩
defined for every x ∈ R by

⟨x⟩∗ :=


{x} if x /∈ Z,
1 if x ∈ Z>0,

0 otherwise.

For i ∈ Vb, if ci < si, then ei is invertible modulo si/ci which is a denominator
of αi. It follows that eiαi ∈ Z≤0 if and only if αi ∈ Z≤0. Hence, we deduce
from (4.2) that, for all b ≥ br,t and all x ∈ R, ∆b(x) is equal to

(4.4)
∑
i∈Vb

⌊
cix− ⟨eiαi⟩∗ −

⌊1− αi⌋
b/ci

⌋
−

∑
j∈Wb

⌊
djx− ⟨fjβj⟩∗ −

⌊1− βj⌋
b/dj

⌋
+#Vb −#Wb.

Let dr,t be the least common multiple of the integers s1, . . . , sv, u1, . . . , uw.
If in addition b is coprime to dr,t, then all the numbers ci and dj are equal
to 1. Let a in {1, . . . , dr,t} be such that ab ≡ 1 mod dr,t. Then, for all i and j,
we can take ei = fj = a, so that

∆b(x) =

v∑
i=1

⌊
x−⟨aαi⟩∗−

⌊1− αi⌋
b

⌋
−

w∑
j=1

⌊
x−⟨aβj⟩∗−

⌊1− βj⌋
b

⌋
+ v−w.

Moreover, if all the numbers αi and βj belong to (0, 1], then

∆b(x) =

v∑
i=1

⌊x− ⟨aαi⟩⌋ −
w∑

j=1

⌊x− ⟨aβj⟩⌋+ v − w,

which only depends on the congruence class of b modulo dr,t.

5. Efficient criteria for q-integrality of basic hypergeometric se-
quences. To verify the second assertion in Proposition 4.1 and in Corollary
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4.2, we need in principle to perform infinitely many tests, checking the non-
negativity of the step function ∆r,t

b on R≥0 for all sufficiently large integers b.
This is not entirely satisfactory and the aim of Theorem 1.3 is precisely to
reduce the situation to a finite number of similar tests. In this section, we
introduce the step functions Ξr,t(b, ·), b ∈ {1, . . . , dr,t}. Then we prove The-
orem 1.3.

5.1. A generalization of Christol step functions. Following Chris-
tol [11], we define a total order ⪯ on R as follows. For all real numbers x
and y, we set

x ⪯ y ⇐⇒ (⟨x⟩ < ⟨y⟩ or (⟨x⟩ = ⟨y⟩ and x ≥ y)).

We refer to it as Christol order. Let α := (α1, . . . , αv) and β := (β1, . . . , βw)
be two vectors of rational numbers, and

dα,β := lcm(d(α1), . . . , d(αv), d(β1), . . . , d(βw)).

For every integer a ∈ {1, . . . , dα,β} coprime to dα,β, Christol defined a step
function ξα,β(a, ·) from R to R by

(5.1) ξα,β(a, x) := #{i ∈ {1, . . . , v} : aαi ⪯ x}
−#{j ∈ {1, . . . , w} : aβj ⪯ x}.

We recall here our notation. Let v and w be positive integers, and for
i ∈ {1, . . . , v} and j ∈ {1, . . . , w}, let (ri, si) and (tj , uj) be pairs of inte-
gers such that siuj ̸= 0 for all (i, j). Set αi := ri/si, βj := tj/uj , r :=
((r1, s1), . . . , (rv, sv)), t := ((t1, u1), . . . , (tw, uw)), α := (α1, . . . , αv), β :=
(β1, . . . , βw), and dr,t := lcm(s1, . . . , sv, u1, . . . , uw).

For every b ∈ {1, . . . , dr,t}, we define the step function Ξr,t(b, ·) as follows.
For all i ∈ {1, . . . , v} and j ∈ {1, . . . , w}, we set ci := gcd(ri, si, b) and
dj := gcd(tj , uj , b). We consider, as in (4.1), the sets of indices

Vb := {1 ≤ i ≤ v : gcd(si, b) = ci},
Wb := {1 ≤ j ≤ w : gcd(uj , b) = dj}.

As already observed in Section 4.3, for every i ∈ Vb and j ∈ Wb, there exist
positive integers ei and fj such that

bei ≡ ci mod si and bfj ≡ dj mod uj .

For all i, j, we choose such integers ei and fj . We stress that the definition
of Ξr,t(b, ·) (see Definition 5.1) does not depend on this choice. Let b̃ be
the greatest divisor of b coprime to dr,t and let a be the unique element of
{1, . . . , dr,t} satisfying ab̃ ≡ 1 mod dr,t.
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Definition 5.1. For every integer b in {1, . . . , dr,t}, we define the step
function Ξr,t(b, ·) : R → R by

Ξr,t(b, x) := #

{
(i, k) ∈ Vb × {0, . . . , ci − 1} :

⟨eiαi⟩+ k

ci
− ⌊1− aαi⌋ ⪯ x

}
−#

{
(j, ℓ) ∈ Wb×{0, . . . , dj−1} :

⟨fjβj⟩+ℓ

dj
−⌊1−aβj⌋ ⪯ x

}
.

5.2. Comparison with the step functions ξα,β(a, ·) and ∆r,t
b . The

functions Ξr,t(b, ·) can be thought of as a generalization of ξα,β(a, ·) to
composite numbers b. Indeed, if we assume that b is coprime to dr,t and
that all the ratios αi = ri/si and βj = tj/uj belong to Q \ Z≤0, then
Ξr,t(b, ·) = ξα,β(a, ·) where ab ≡ 1 mod dr,t.

Let us prove this claim. If b is coprime to dr,t, then b = b̃, all the numbers
ci and dj are equal to 1, Vb = {1, . . . , v}, and Wb = {1, . . . , w}. Hence, for all i
and j, we can choose ei = fj = a. Moreover, for all (i, k) ∈ Vb×{0, . . . , ci−1},
we have k = 0. We obtain

⟨eiαi⟩+ k

ci
− ⌊1− aαi⌋ = ⟨aαi⟩ − ⌊1− aαi⌋ = aαi.

Similarly, for all (j, ℓ) ∈ Wb × {0, . . . , dj − 1}, we have
⟨fjβj⟩+ ℓ

dj
− ⌊1− aβj⌋ = aβj .

By (5.1), we get

Ξr,t(b, x) = #
{
(i, k) ∈ {1, . . . , v} × {0} : aαi ⪯ x

}
−#

{
(j, ℓ) ∈ {1, . . . , w} × {0} : aβj ⪯ x

}
= #

{
i ∈ {1, . . . , v} : aαi ⪯ x

}
−#

{
j ∈ {1, . . . , w} : aβj ⪯ x

}
= ξα,β(a, x).

Let us now compare the step functions Ξr,t(b, ·) and ∆r,t
b . Using (4.2),

we can give a new expression for ∆r,t
b (restricted on [0, 1]) which is closer to

the definition of Ξr,t(b, ·). Indeed, for every positive integer b and every real
number x in [0, 1], we get

∆r,t
b (x) =#

{
(i, k) ∈ Vb × {0, . . . , ci − 1} :

Db/ci(αi) + k

ci
+

⌊1− αi⌋
b

≤ x

}(5.2)

−#

{
(j, ℓ) ∈ Wb×{0, . . . , dj−1} :

Db/dj (βi)+ℓ

dj
+
⌊1−βj⌋

b
≤ x

}
.

5.3. Ordering of jumps. The interest of the step functions Ξr,t(b, ·) is
that they keep track of all jumps configurations of the Landau functions ∆r,t

ℓ
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for large ℓ congruent to b modulo dr,t. More precisely, we have the following
result.

Lemma 5.2. For every i ∈ {1, 2}, let ri and si be integers with si ̸= 0
and such that αi := ri/si /∈ Z≤0. Set d := lcm(s1, s2) and let b be an integer
such that

b > max(|r1|, |r2|, d · |⌊1− α1⌋ − ⌊1− α2⌋|).
Set ci := gcd(ri, si, b) and assume that there exists an integer ei, 1 ≤ ei ≤ d,
such that bei ≡ ci mod si. Let ki ∈ {0, . . . , ci−1} and a be a positive integer.
Set

γi :=
Db/ci(αi) + ki

ci
+

⌊1− αi⌋
b

and Γi :=
⟨eiαi⟩+ ki

ci
− ⌊1− aαi⌋.

Then
γ1 ≤ γ2 ⇐⇒ Γ1 ⪯ Γ2.

Furthermore, if Γ1 = Γ2, then α1 = α2.

Remark 5.3. Contrary to what the notation of Lemma 5.2 may suggest,
we stress that this lemma applies to compare the ordering of both the jumps
with positive and negative amplitude of the step functions Ξr,t(b, ·) and ∆r,t

b .

Even when b ≥ br,t, formula (4.4) shows that the Landau functions ∆r,t
b

depend in principle on b and not only on the congruence class of b mod-
ulo dr,t. In contrast, Lemma 5.2 shows that for sufficiently large b, the ≤-
ordering of the jumps of ∆r,t

b on [0, 1] is the same as the ⪯-ordering of the
jumps of Ξr,t(b, ·) on R, where b is the unique representative in {1, . . . , dr,t}
of b modulo dr,t. In particular, this ordering only depends on the congruence
class of b modulo dr,t.

Furthermore, Lemma 5.2 shows that if two jumps of Ξr,t(b, ·), respectively
associated with the pairs (r1, s1) and (r2, s2), have the same abscissa, then we
must have r1/s1 = r2/s2. However, these pairs can still be distinct. Indeed,
taking for example the pairs (r1, s1) = (1, 4) and (r2, s2) = (3, 12), and b = 9,
we find that d = 12 and b̃ = 1, so that a = 1, c1 = 1, c2 = 3, e1 = 1, and
e2 = 3. Hence taking k1 = k2 = 0 yields

Γ1 = ⟨1/4⟩ = 1

4
and Γ2 =

⟨3/4⟩
3

=
1

4
·

Proof of Lemma 5.2. For i ∈ {1, 2}, we set bi := b/ci and

θi :=
Dbi(αi) + ki

ci
·

Since b > |ri| and ci divides both ri and si, we have bi > |n(αi)| and hence
bi ≥ nαi . By Proposition 3.3, we have Dbi(αi) = ⟨eiαi⟩ for αi /∈ Z≤0, so that

(5.3) θi =
⟨eiαi⟩+ ki

ci
·
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Note that θi ∈ 1
dZ. Indeed, ci divides gcd(ri, si) so that αi/ci ∈ 1

si
Z, while d

is a multiple of si. Now, we show that

(5.4) θ1 = θ2 =⇒ ⟨α1⟩ = ⟨α2⟩.
Setting s′i := si/ci for i ∈ {1, 2}, we see that biei ≡ 1 mod s′i and αi ∈ 1

s′i
Z.

We obtain
⟨bi⟨eiαi⟩⟩ = ⟨αi⟩.

Therefore,

θ1 = θ2 =⇒ bθ1 = bθ2

=⇒ b1⟨e1α1⟩+ b1k1 = b2⟨e2α2⟩+ b2k2

=⇒ ⟨b1⟨e1α1⟩⟩ = ⟨b2⟨e2α2⟩⟩
=⇒ ⟨α1⟩ = ⟨α2⟩,

which proves (5.4).
Furthermore, since α = ⟨α⟩ − ⌊1− α⌋, we have

⌊1− aαi⌋ = ⌊1− a⟨αi⟩+ a⌊1− αi⌋⌋ = ⌊1− a⟨αi⟩⌋+ a⌊1− αi⌋.
If θ1 = θ2, then ⟨α1⟩ = ⟨α2⟩ and

(5.5) ⌊1− aα1⌋ ≥ ⌊1− aα2⌋ ⇐⇒ ⌊1− α1⌋ ≥ ⌊1− α2⌋,
for a is a positive integer. Since θi ∈ 1

dZ and b > d · |⌊1−α1⌋− ⌊1−α2⌋|, we
obtain the following equivalences:

γ1 ≤ γ2 ⇐⇒ θ1 +
⌊1− α1⌋

b
≤ θ2 +

⌊1− α2⌋
b

⇐⇒ θ1 − θ2 ≤
⌊1− α2⌋ − ⌊1− α1⌋

b
⇐⇒ θ1 < θ2 or (θ1 = θ2 and ⌊1− α1⌋ ≤ ⌊1− α2⌋)
⇐⇒ θ1 < θ2 or (θ1 = θ2 and ⌊1− aα1⌋ ≤ ⌊1− aα2⌋)
⇐⇒ θ1 − ⌊1− aα1⌋ ⪯ θ2 − ⌊1− aα2⌋
⇐⇒ Γ1 ⪯ Γ2.

Indeed, we have θi ∈ (0, 1], which implies that ⟨θi − ⌊1 − aαi⌋⟩ = θi, while
(5.3) implies that θi − ⌊1 − aαi⌋ = Γi. This proves the first part of the
proposition.

Now, assume that Γ1 = Γ2 so that θ1−⌊1−aα1⌋ = θ2−⌊1−aα2⌋. Since
θi ∈ (0, 1], it follows that θ1 = θ2. Hence ⟨α1⟩ = ⟨α2⟩ by (5.4). We obtain
that ⌊1−aα1⌋ = ⌊1−aα2⌋ and (5.5) implies that ⌊1−α1⌋ = ⌊1−α2⌋. Since
αi = ⟨αi⟩ − ⌊1− αi⌋, we get α1 = α2, as expected. This ends the proof.

5.4. Efficient criteria for q-integrality and proof of Theorem 1.3.
We are now ready to prove Theorem 1.3. The last missing ingredient is the
following lemma.
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Lemma 5.4. Let r=((r1, s1), . . . , (rv, sv)) and t=((t1, u1), . . . , (tw, uw))
be vectors with integer coordinates such that, for all (i, j), siuj ̸= 0 and the
ratios ri/si and tj/uj do not belong to Z≤0. Then the following two assertions
are equivalent:
(i) For all but finitely many b, ∆r,t

b is non-negative on R≥0.
(ii) For every b ∈ {1, . . . , dr,t} and all x ∈ R, we have Ξr,t(b, x) ≥ 0.

Proof. We write ∆b and Ξ(b, ·) as respective shorthands for ∆r,t
b and

Ξr,t(b, ·).
If b is large enough, then we infer from (5.2) that ∆b is a step function

whose jumps on [0, 1] are precisely located at rationals of the form

γ(r, s, k) :=
Db/c(α) + k

c
+

⌊1− α⌋
b

,

where (r, s) belongs either to r or to t, α = r/s, c = gcd(r, s, b) and k ∈
{0, . . . , c− 1}. More precisely, ∆b has a jump of positive amplitude at each
element of the multiset

J+b :=

{{
Db/ci(αi) + k

ci
+

⌊1− αi⌋
b

: i ∈ Vb, 0 ≤ k ≤ ci − 1

}}
.

The amplitude of such a jump is equal to the multiplicity of the correspond-
ing element in J+b . Similarly, ∆b has a jump of negative amplitude at each
element of the multiset

J−b :=

{{
Db/dj (βj) + ℓ

dj
+

⌊1− βj⌋
b

: j ∈ Wb, 0 ≤ ℓ ≤ dj − 1

}}
,

and the amplitude of such a jump is equal to the multiplicity of the corre-
sponding element in J−b . By Lemma 3.7, the supports of these multisets are
included in (0, 1]. Let

0 < γ1 < · · · < γµ ≤ 1

denote the elements of the support of the multiset Jb := J+b ∪ J−b . We let
m+

i (resp. m−
i ) denote the multiplicity of γi in J+b (resp. in J−b ), and we set

mi := m+
i − m−

i . Let x ∈ [0, 1] and set ν := sup {i ∈ {1, . . . , µ} : γi ≤ x}
with the convention sup(∅) = −∞. Then, setting γ−∞ := 0, we obtain

∆b(x) = ∆b(γν) =

{
m1 + · · ·+mν if ν ≥ 1,
0 if ν = −∞.

On the other hand, let b denote the unique representative of b in
{1, . . . , dr,t} modulo dr,t and let us consider the multisets

J +
b :=

{{
⟨eiαi⟩+ k

ci
− ⌊1− aαi⌋ : i ∈ Vb, 0 ≤ k ≤ ci − 1

}}
,

J −
b :=

{{
⟨fjβj⟩+ ℓ

dj
− ⌊1− aβj⌋ : j ∈ Wb, 0 ≤ ℓ ≤ dj − 1

}}
.
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By Lemma 5.2, the support of Jb := J +
b ∪ J −

b also has cardinality µ. Let

(5.6) Γ1 ≺ · · · ≺ Γµ

denote the elements of the support of Jb (in Christol order). Furthermore,
Lemma 5.2 implies that Γi also has multiplicity m+

i in J +
b and m−

i in J −
b . Let

x ∈ R and set ν := sup {i ∈ {1, . . . , µ} : Γi ⪯ x}. Then, setting Γ−∞ := 0,
we obtain

Ξ(b, x) = Ξ(b, Γν) =

{
m1 + · · ·+mν if ν ≥ 1,
0 if ν = −∞.

We deduce that

(5.7) ∆b([0, 1]) = {0, ∆b(γ1), . . . ,∆b(γµ)}
= {0, Ξ(b, Γ1), . . . , Ξ(b, Γµ)} = Ξ(b,R).

This shows that assertion (ii) is equivalent to ∆b being non-negative on
[0, 1] for all b large enough. On the other hand, the identity ∆b(x + k) =
∆b(x) + k∆b(1) proved for k ∈ Z in Lemma 4.3 shows that ∆b is non-
negative on [0, 1] if and only if it is non-negative on R≥0. Finally, we see that
assertions (i) and (ii) are equivalent, which ends the proof.

Remark 5.5. We infer from (5.7) that the step function Ξr,t(b, ·) is non-
negative on R if and only if Ξr,t(b, Γi) ≥ 0 for all i, 1 ≤ i ≤ µ. Furthermore,
since the Γi’s are given by (5.6) explicitly, one can easily compute Ξr,t(b, Γi).

We first deduce from Proposition 4.1 and Lemma 5.4 the following result.

Theorem 5.6. Assume that (Qr,t(q;n))n≥0 is a well-defined sequence
which is not eventually zero. Then the following two assertions are equivalent:

(i) There exists C(q) ∈ Z[q] \ {0} such that C(q)nQr,t(q;n) ∈ Z[q−1, q] for
every n ≥ 0.

(ii) For every b ∈ {1, . . . , dr,t} and all x ∈ R, we have Ξr,t(b, x) ≥ 0.

Finally, we can complete the proof of our main q-integrality criterion.

Proof of Theorem 1.3. The result is a straightforward consequence of
Corollary 4.2 and Lemma 5.4.

As discussed in Section 4.1, efficient criteria for the q-integrality of the
sequences (Qr,t(q;n))n≤0 and (Qr,t(q;n))n∈Z can also be derived from The-
orems 1.3 and 5.6.

6. Examples and applications. In this last section, we give an overview
of the computation of Christol step functions through some classical examples.
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6.1. General considerations. We keep the general notation of this
paper. For every b ∈ {1, . . . , dr,t}, we have defined in Section 5.1 the step
function Ξr,t(b, ·). Using the notation used in the proof of Lemma 5.4, we
obtain

Ξr,t(b, x) := #{{γ ∈ J +
b : γ ⪯ x}} −#{{γ ∈ J −

b : γ ⪯ x}}.
When b ∈ {1, . . . , dr,t} is coprime to dr,t, the function Ξr,t(b, ·) is easier to
compute since

J +
b = {{aα1, . . . , aαv}} and J −

b = {{aβ1, . . . , aβw}},
where a is the unique integer in {1, . . . , dr,t} satisfying ab ≡ 1 mod dr,t.
Theorem A can then be rephrased as follows:

(Qα,β(n))n≥0 is N -integral
⇐⇒ ∀b ∈ {1, . . . , dr,t} with gcd(b, dr,t) = 1, ∀x ∈ R Ξr,t(b, x) ≥ 0.

Starting with an N -integral hypergeometric sequence
(α1)n · · · (αv)n
(β1)n · · · (βw)n

, n ≥ 0,

and taking r and t such that

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

,

with ri/si = αi and tj/uj = βj , Lemma 5.2 ensures the existence of a
constant cr,t such that, for every integer b coprime to dr,t and larger than
cr,t, we have

vϕb
(Qr,t(q;n)) = ∆r,t

b (n/b) ≥ 0.

Indeed, for b > cr,t, Lemma 5.2 shows that the ≤-ordering of the jumps of
∆r,t

b on [0, 1] is the same as the ⪯-ordering of the jumps of Ξr,t(b, ·) on R,
where b is the unique representative in {1, . . . , dr,t} of b modulo dr,t. In
particular, ∆r,t

b is non-negative on R≥0 as expected.
Hence the denominator of Qr,t(q;n) could only contain cyclotomic poly-

nomials ϕb(q) with b ≤ cr,t or b not coprime to dr,t. The situation with such
numbers b is much more complicated and strongly depends on the gcd’s of
the pairs (ri, si) and (tj , uj).

Let us first consider the case where gcd(ri, si) = 1 and gcd(tj , uj) = 1 for
all i and j. Let b ∈ {1, . . . , dr,t}, let b̃ be the greatest divisor of b coprime to
dr,t, and let a be the unique integer in {1, . . . , dr,t} satisfying ab̃ ≡ 1 mod dr,t.
Then, following the notation of Section 5.1, we find ci = dj = 1, so that

Vb = {1 ≤ i ≤ v : gcd(si, b) = 1},
Wb = {1 ≤ j ≤ w : gcd(uj , b) = 1},
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which yields

J +
b = {{⟨eiαi⟩ − ⌊1− aαi⌋ : i ∈ Vb}},

J −
b = {{⟨fjβj⟩ − ⌊1− aβj⌋ : j ∈ Wb}}.

Hence each “classical” jump occurring at aαi (by this, we mean the jumps
occurring when b is coprime to dr,t) either disappears because b is not co-
prime to si, or is replaced by a jump at ⟨eiαi⟩− ⌊1− aαi⌋ when b is coprime
to si. Even in this particular case, we already understand that the new step
functions can behave in a very different way than the classical ones.

As an illustration, we consider the simple example

Qr,t(q;n) :=
(q; q3)n(q

2; q3)n
(q; q2)n(q; q)n

,

which was introduced at the end of Section 1.1 and corresponds to r =
((1, 3), (2, 3)) and t = ((1, 2), (1, 1)). We have(

(1− q2)(1− q)

(1− q3)2

)n

Qr,t(q;n)
q→1−−−→ (1/3)n(2/3)n

(1/2)n(1)n
,

the right-hand side being N -integral. This can be derived from (1.2). We
find that dr,t = 6, and for b = 3 we obtain b̃ = 1 and a = 1. This yields
V3 = ∅, W3 = {1, 2}, and f1 = f2 = 1. Hence J +

3 = ∅ and J −
3 = {{1/2, 1}},

so that Ξ(3, 1/2) < 0. Thus, we deduce from Theorem 1.3 that the sequence
(Qr,t(q;n))n≥0 is not q-integral.

On the other hand, we have

(6.1)
(q; q3)n(q

2; q3)n
(q; q2)n(q; q)n

· (q
3; q3)n

(q2; q2)n
=

[
3n

2n

]
q

∈ Z[q],

which shows that the corresponding q-hypergeometric sequence is obviously
q-integral. In order to understand the effect of the extra factors (q3; q3)n and
(q2; q2)n, we have to investigate the case where gcd(ri, si) ̸= 1.

When gcd(ri, si) ̸= 1, we possibly have ci = gcd(ri, si, b) ̸= 1. In this
case, either gcd(si, b) ̸= ci and the “classical” jump at aαi disappears, or
there is an integer ei satisfying bei ≡ ci mod si and the jump at aαi splits
into ci distinct jumps at

⟨eiαi⟩+ k

ci
− ⌊1− aαi⌋, 0 ≤ k ≤ ci − 1.

Let us now return to (6.1) and consider the case where b = 3. Then, we
find that c3 = 3, V3 = {3}, and e3 = 1. This yields jumps with amplitude +1
at all elements of the (multi)set J +

3 = {{1/3, 2/3, 1}}. On the other hand,
we have W3 = {1, 2, 3} and f1 = f2 = f3 = 1, which yields jumps with
amplitude −1 at all elements of the multiset J −

3 = {{1/2, 1, 1}}. In the end,
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we get

(6.2) Γ1 =
1
3 ≺ Γ2 =

1
2 ≺ Γ3 =

2
3 ≺ Γ4 = 1,

with m1 = 1, m2 = −1, m3 = 1, and m4 = −1. It follows that the step
function Ξ(3, ·) is non-negative on R, as expected.

6.2. q-Factorial ratios. Let us recall that [n]q = (1 − qn)/(1 − q), so
that

[n]q =
∏

b≥2, b|n

ϕb(q)

and

(6.3) [n]!q :=
n∏

i=1

1− qi

1− q
=

∏
b≥2

ϕb(q)
⌊n/b⌋.

Given two vectors e := (e1, . . . , ev) and f := (f1, . . . , fw) whose coordinates
are positive integers, we define as in [22] the q-analog of the factorial ratio
Qe,f (n) as

Qe,f (q;n) :=
[e1n]!q · · · [evn]!q
[f1n]!q · · · [fwn]!q

·

We deduce from (6.3) that

Qe,f (q;n) =
∏
b≥2

ϕb(q)
∆e,f (n/b),

where

∆e,f (x) =

v∑
i=1

⌊eix⌋ −
w∑

j=1

⌊fjx⌋

is the classical Landau function, as defined in (1.1). We easily see that
Qe,f (q;n) is q-integral if and only if ∆e,f is non-negative on [0, 1]. Note that
these properties are also equivalent to Qe,f (q;n) ∈ Z[q] (see also [22] where
a positivity conjecture for the coefficients of these polynomials is proposed).
It is therefore much more efficient to work with ∆e,f than to compute the
corresponding Christol functions.

The example given in (6.1) corresponds to e = (3) and f = (2, 1), so that

∆e,f (x) = ⌊3x⌋ − ⌊2x⌋ − ⌊x⌋.

On [0, 1], this step function has jumps with positive amplitude +1 at 1/3
and 2/3, and jumps with negative amplitude −1 at 1/2 and 1. As expected,
we retrieve the same ordering as in (6.2) for the jumps of Ξ(3, ·).

6.3. A famous non-factorial example. When introducing his step
functions in [11], Christol was motivated by the following question: is it true
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that an N -integral hypergeometric series is the diagonal of a rational fraction
in several variables? The hypergeometric sequence

(6.4)
(1/9)n(4/9)n(5/9)n

(1/3)n(1)2n
, n ≥ 0,

is one of the simplest examples of an N -integral hypergeometric sequence for
which the question is still open (although recent progress in this direction
has been made in [1, 8]).

In this case, the six Christol functions associated with each b coprime to 9
are non-negative on R. By Theorem A, this ensures that this hypergeometric
sequence is N -integral. A precise formula for the smallest positive integer N0

is given in [14, Theorem 4]: here we get N0 = 93.
As already discussed, a natural q-analog of (6.4) can be defined as(

(1− q3)(1− q)2

(1− q9)3

)n (q; q9)n(q
4; q9)n(q

5; q9)n
(q; q3)n(q; q)2n

, n ≥ 0.

The q-integrality of this sequence is equivalent to the one of the q-hy-
pergeometric sequence Qr,t(q;n), where r = ((1, 9), (4, 9), (5, 9)) and t =
((1, 3), (1, 1), (1, 1)).

It remains to consider the Christol functions associated with b ∈ {3, 6, 9}.
For b = 3, we have gcd(9, b) = 3 ̸= 1 so that J +

3 = ∅. But due to the factors
(q; q)2n in the denominator, we obtain J −

3 = {{1, 1}}, so that Ξr,t(b, 1) < 0.
We deduce from Theorem 1.3 that the sequence (Qr,t(q;n))n≥0 is not q-
integral. In this example, all the “classical” jumps with positive amplitude
have disappeared for b = 3.

In fact, we can retrieve q-integrality by adding a factor (q9; q9)n to the
numerator and a factor (q; q)n to the denominator. This leads to the slightly
modified q-analog:(

(1− q3)(1− q)3

(1− q9)4

)n (q; q9)n(q
4; q9)n(q

5; q9)n(q
9; q9)n

(q; q3)n(q; q)3n
, n ≥ 0.

With this new choice of parameters r′ and t′, the functions Ξr′,t′(b, ·) for b
coprime to 9 remains unchanged. However, for b in {3, 6, 9}, one finds that
Vb is no longer empty. A computation shows that Vb = {4}, Wb = {2, 3, 4},
J −
3 = J −

9 = {{1, 1, 1}}, J −
6 = {{5, 5, 5}}, while

J +
3 =

{{
1
3 ,

2
3 , 1

}}
, J +

6 =
{{

1
3 + 4, 23 + 4, 5

}}
, J +

9 =
{{

1
9 ,

2
9 , . . . ,

8
9 , 1

}}
.

In all cases, Ξr′,t′(b, ·) is now non-negative on R and we infer from Theorem
5.6 that the sequence (Qr′,t′(q;n))n≥0 is q-integral.

Finally, we consider a third q-analog of the hypergeometric sequence
(6.4), which we define as

(6.5) Q̃α,β(q;n) =
(q1/9; q)n(q

4/9; q)n(q
5/9; q)n

(q1/3; q)n(q; q)2n
, n ≥ 0.
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As already discussed, the q1/9-integrality of (Q̃α,β(q;n))n≥0 is equivalent to
the q-integrality of the sequence

Q̃α,β(q
9;n) =

(q; q9)n(q
4; q9)n(q

5; q9)n
(q3; q9)n(q9; q9)2n

, n ≥ 0.

Furthermore, we have Q̃α,β(q
9;n) = Qr,t(q;n) for a suitable choice of vectors

r and t. As previously, a computation shows that for b = 3, we have J +
3 = ∅,

while 1 ∈ J −
3 , so that Ξr,t(3, 1) < 0. We deduce from Theorem 5.6 that

(Qr,t(q;n))n≥0 is not q-integral. Hence the sequence defined in (6.5) is not
q1/9-integral.

We observe that, in this case, we cannot use the same trick as before.
Indeed, multiplying Q̃r,t(q

9;n) by (q9; q9)n/(q; q)n amounts to multiplying
(6.5) by (q; q)n/(q

1/9; q1/9)n which does not correspond to any choice of
parameters α and β.
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